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Cyclical nursing patterns in wild orangutans
Tanya M. Smith,1,2* Christine Austin,3 Katie Hinde,2,4,5 Erin R. Vogel,6 Manish Arora3*

Nursing behavior is notoriously difficult to study in arboreal primates, particularly when offspring suckle in-
conspicuously in nests. Orangutans have the most prolonged nursing period of any mammal, with the cessation of
suckling (weaning) estimated to occur at 6 to 8 years of age in the wild. Milk consumption is hypothesized to be
relatively constant over this period, but direct evidence is limited. We previously demonstrated that trace element
analysis of bioavailable elements from milk, such as barium, provides accurate estimates of early-life diet transitions
and developmental stress when coupled with growth lines in the teeth of humans and nonhuman primates. We pro-
vide the first detailed nursing histories of wild, unprovisioned orangutans (Pongo abelii and Pongo pygmaeus) using
chemical and histological analyses. Laser ablation inductively coupled plasma mass spectrometry was used to deter-
mine barium distributions across the teeth of four wild-shot individuals aged from postnatal biological rhythms.
Barium levels rose during the first year of life in all individuals and began to decline shortly after, consistent with
behavioral observations of intensive nursing followedby solid food supplementation. Subsequent barium levels show
large sustained fluctuations on an approximately annual basis. These patterns appear to be due to cycles of varying
milk consumption, continuing until death in an 8.8-year-old Sumatran individual. A female Bornean orangutan ceased
suckling at 8.1 years of age. These individuals exceed themaximumweaning age reported for any nonhumanprimate.
Orangutan nursing may reflect cycles of infant demand that relate to fluctuating resource availability.
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INTRODUCTION
Life history, or the way in which organisms allocate energy to growth,
reproduction, and maintenance, is fundamental to a species’ biology
and behavior. Lactation is a significant energetic investment for mam-
malian mothers, whose reproductive success is also affected by
environmental conditions (1). Orangutans live in highly variable and
unpredictable environments and have lower daily energy expenditures
when compared with humans and other mammals (2, 3). This strategy
of energy minimization has been hypothesized to facilitate the
avoidance of starvation during episodes of fruit scarcity in these
large-bodied primates, resulting in the slowest life histories of any non-
human primate (2, 4, 5). However, little is known about weaning age in
wild orangutans, nor other aspects of life history, such as life span.
Experienced field biologists have concluded that observational
approaches do not permit comprehensive quantification of suckling
duration or milk intake in wild orangutans and other arboreal primates
(6). Infants and older immature individuals may suckle incon-
spicuously, as well as while nesting with mothers at night, both difficult
to detect in an arboreal environment (7). Moreover, continuous long-
term field studies encounter obstacles while documenting a process that
may last for seven or more years, and they typically rely on age estima-
tions because exact birth dates are rarely known (4, 8, 9).

During lactation, mammals produce calcium-rich milk by drawing
on skeletal reserves. Approximately 99% of the calcium in the body is
found in bone, and the remaining amount in blood and organ tissues is
continuously adjusted to maintain homeostasis. Certain low-level non-
essential elements, such as barium and lead, often follow themovement
of calcium in the body because they share certain transport pathways.
These elements are preferentially concentrated in mothers’ milk, al-
thoughbariumpasses through apartial filtering system (biopurification),
making it proportionately less common than calcium.We have recently
detailed an approach to document nursing in primates that integrates
elemental mapping of barium concentrations and developmental anal-
ysis of teeth (10). Barium is an accurate indicator of milk provisioning
because of the shared chemical properties with calcium, and it is more
readily absorbed from maternal milk than from other dietary items
(10, 11). For example, barium sulfate is used as a contrast agent for x-ray
imaging because very little is absorbed by the gastrointestinal tract (12).

Nursing infants rapidly incorporate barium from milk into their
skeletal tissues, including bones and teeth (10), as is the case for calcium
and lead (13, 14). Thus, barium passes from one generation to the next,
because stores originally incorporated into skeletal tissues during the
mother’s development are mobilized for her infant. Minor contribu-
tionsmay also come fromdietary sources, air, andwater; however,most
of the barium that is not incorporated into skeletal tissues is excreted
within 1 to 2 weeks (12). Macaque mothers on a uniform diet show dif-
ferences in barium levels in their milk (10), representing additional
evidence that bariumconcentrations are primarily a function of somatic
stores rather than dietary sources of barium. Therefore, elevated barium
values in the teeth of nursing infants and immature individuals reflect
the ingestion of maternal milk rather than nonmilk foods consumed
directly or by their mothers while nursing.

Ourmethod complements dietary studies of wild primates that pro-
duce temporally restricted measures of isotopes or trace elements from
samples of hair or feces [reviewed by Tsutaya and Yoneda (15)]. Trace
element analyses of teeth can be anchored to incremental growth lines
to assign ages to specific values, yielding a precise longitudinal perspec-
tive that begins before birth andmay continue until death (10, 16).Here,
we show that accurate nursing histories and weaning ages can be
determined from primate dentitions in zoological museums that were
collected many decades ago. This approach is especially timely for crit-
ically endangered taxa, such as Sumatran and Bornean orangutans,
Pongo abelii and Pongo pygmaeus, whose slow rate of growth and
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DISCUSSION
Nursing patterns during the first year of life
All four orangutans show a gradual increase in bariumvalues frombirth
through their first year of life. Consistent with our findings, behavioral
observations of wild Bornean orangutans report that they rely almost
exclusively on mothers’ milk in their first year; solid food supplemen-
tation only becomes an appreciable component of their diet between
12 and 18months of age (6, 9). A similar pattern of increasing barium
concentration was found in the first molars of rhesus macaques in
their first 3 months of life (10). The initially low milk volume in the
neonatal period increases during exclusive milk feeding as a function of
infant growth, increased gastric capacity, and expanded behavioral
repertoire (17). After 3 months, the barium levels in macaque teeth de-
creased, coincident with the consumption of solid foods. Thus, the ini-
tial pattern of barium concentration slowly increasing, peaking, and
declining in wild orangutans and captivemacaques reflects the inverted
U-shaped curve of primate lactation (18).

Nursing patterns after the first year of life
We found that barium values decreased between 12 and 18 months of
age in the four orangutans and then began to cycle on an approximately
annual basis. This decreasing barium signature in teeth corresponds
with the transition from a predominant milk diet to one characterized
by increasing intake of solid foods. In contrast to seasonally breeding
primates, such as rhesus macaques, orangutan females nurse their off-
spring over multiple years, enduring extreme and unpredictable inter-
and intra-annual fluctuations in fruit availability (Fig. 5) (5, 9, 19–22).
Cyclical episodes of decreased barium concentrations in immature
orangutans likely reflect elevated solid food consumption during
periods of high fruit availability. Confirmation of this hypothesis will
require behavioral data from individuals whose barium concentrations
may be quantified concurrently. This is a particular challenge because
most museum specimens, including those in the current study, were
collected long before primatological field sites were established in
Indonesia and Malaysia (23). Periods of increased fruit availability not
only alleviate infant demand of maternal resources but also afford
females the opportunity to replenish energetic reserves to sustain lacta-
tion and/or transition to their subsequent reproduction.

Fig. 1. Temporal map and barium distribution in the first molar of an immature
wild Bornean orangutan. (A) Light microscopy image (left) of the mesiolingual
cusp of the developing upper first molar (MCZ 5290) contrasted with an elemental
map of the same section (right) showing the distribution of barium in the crown
and root. Numbers on themicroscopic image represent the age in days. High barium
values in the outer enamel (red fringe) represent postdepositional modification of
the subsurface enamel. Note that a small section of the subsurface root dentine
was lost during preparation for elemental mapping [indicated by “*” here and in
(B)]. (B) Calcium-normalized barium concentrations quantified in the dentine just
below the enamel/root surface from the beginning of calcification (dentine horn tip
below the enamel cusp) until death at 4.5 years of age (root tip). The approximate age
of barium incorporation during dentinemineralization was determined from concur-
rently forming accentuated lines mapped with light microscopy (A). These ages are
presented on a nonlinear scale that relates to the changing rate of extension during
molar crown formation. The red bracket denotes a pattern of increasing barium in-
corporation due to milk consumption during the first year of life. Approximately an-
nual marked decreases in barium/calcium begin around 400 days and continue until
death, likely reflecting cycles of increased solid food consumption and reduced milk
intake.
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reproduction is a significant liability in a region that is being rapidly
deforested.
RESULTS
Histological and elemental maps of themolars of four immature orang-
utans reveal an increase in bariumvalues throughout the first year of life
(Figs. 1 and 2). After the first year, the four immature orangutans in our
study show episodic decreases in barium concentrations on an approx-
imately yearly basis (Figs. 1, 3, and 4 and fig. S1). Cyclical patterns of
barium levels persist into the eighth year of life in a Bornean female and
into the ninth year of life in a Sumatran male and a second Sumatran
individual of unknown sex. One Bornean female shows a sustained
decrease in bariumconcentrations belowbaseline levels around8.1 years
of age, suggesting complete cessation of suckling before her death at
8.4 years of age (Fig. 3). Our oldest individual, an 8.8-year-old Sumatran
individual of unknown sex, shows a broad elevated barium band for
several months before its death (Fig. 4). Thus, at this age, it does not
appear to have ceased suckling.
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precise methods that document environmental variation during the
lifetime of fossil primates have been lacking. Future applications may
compare fine-scaled barium concentrations in primates from environ-
ments with varied degrees of seasonality and cyclical resource availabil-
ity, whichmay then be extended to interpret patterns in the fossil record
(10). Although further research is needed to test hypotheses for the evo-
lution of primate life histories, the approach documented here provides
a novel view into the nursing behavior and weaning process of one of
the most poorly understood and highly endangered great apes.
MATERIALS AND METHODS
Study design
The objective of the study was to measure barium distributions in teeth
from four immature orangutans to determine their nursing behavior in
the wild, which is poorly understood. Wild orangutan dental samples
are rare; thus, the sample size was based on material from a previous
study of orangutan dental development (27).

Experimental design
Histological sections of themolars of four immature, wild-shot orangu-
tans were prepared according to standard protocols, and accentuated
lines in the enamel were spatiotemporally mapped from incremental
features formed after the neonatal (birth) line (27). In brief, counts
and measurements of daily cross-striations were made along a prism
track from the neonatal line to each successive accentuated line. Ages
were assigned to accentuated lines in the lateral enamel by adding time
Smith et al., Sci. Adv. 2017;3 : e1601517 17 May 2017
represented by previous long-period growth lines to the age at cusp for-
mation (Fig. 1, fig. S2, and table S1).

Histological analyses of immature dentitions can yield ages of death
within ~2% of the actual age of the individual (46–48). In some in-
stances, these estimates can be exact or within 1 day of the individual’s
age at death (31, 49). It is likely that the estimate of the youngest indi-
vidual in the current study (MCZ5290) is themost accurate because the
age was determined from matching two teeth, whereas the older indi-
viduals required registry of accentuated lines combinedwith the barium
banding pattern across several teeth. The timing of accentuated lines
and the age at death of these older individuals were estimated to have
an error of plus or minus 1 month (27).

We used a New Wave Research NWR193 laser ablation system
connected to anAgilent Technologies 8800s inductively coupled plasma
mass spectrometer (ICP-MS) by Tygon tubing. Details of our analytical
methods have been previously published (10, 26). A 35-mm-diameter
laser beam was rastered along the sample surface in a straight line at
a speed of 70 mm s−1, producing data points that correspond to a pixel
size of approximately 35 × 35 mm. Barium concentrations were
calculated from concentrations determined using the certified standard
National Institute of Standards and Technology 612 glass and 43Ca and
138Ba isotopes. There are no matrix-matched standards for laser abla-
tion ICP-MS analysis of teeth. We used certified glass standards and
calcium levels as an internal standard, which limited absolute quantifi-
cation ofmetals. Elemental maps were processed using the interactive R
Shiny application “shinyImaging.” Details of the image processing
methods have been previously published (50), and the application
Fig. 5. Fruit availability (above) and average energetic intake (below) of four lactating wild Bornean orangutan females over 7 years. Data are from the Tuanan
Orangutan Research Area, Central Kalimantan, Indonesia [detailed by Vogel et al. (22, 51)]. Top: The percentage of fruiting trees derives from 1868 marked trees in
monthly monitored phenology plots, 98% of which are species consumed by orangutans. Bottom: Mean daily caloric intake for four adult mother orangutans with
nursing offspring (ranging from 0 to 6 years in age) collected from 2003 to 2010. Data are based on 12,669 hours from 1100 full-day focal animal follows.
6 of 8
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can be accessed at http://labs.icahn.mssm.edu/lautenberglab/. Color
scales were applied using the linear blue-red Lookup Table. Image
backgrounds were converted to white (absent from the color intensity
scale) to clarify sample boundaries from the substrate. Elemental maps
were overlaid on light microscopy images using the Georeferencer tool
in QGIS (version 2.8.2-Wien). Reference points were placed along the
outer edge and along the enamel-dentine junction of the tooth, and the
thin-plate spline transformation was applied.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/5/e1601517/DC1
table S1. Immature wild orangutan individuals examined in the current study.
fig. S1. Barium distribution across two molars from an 8.5-year-old male Sumatran orangutan
(ZSM 1981/246).
fig. S2. Accentuated line ages in the first to third molars of an 8.8-year-old Sumatran orangutan
(ZMB 83508).
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